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Primitive bodies: 
key measurements
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Reproduced from  Castillo-Rogez, Pavone, Nesnas, Hoffman, “Expected Science Return of Spatially-Extended In-Situ Exploration at 
Small Solar System Bodies,” IEEE Aerospace 2012. 



Collecting this data is hard!

Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 3

Images: Tempel 1 (Deep Impact) PIA 02142, NASA/JPL/UMD

Target locations 
are not known in 
advance

Surface activity 
is transient, 
time-variable

Targets have diverse 
morphologies, 
compositions

Closest approach may 
pass quickly (sub-
hour timescales)

Geometry and 
illumination 
constraints

Features of interest are 
highly localized



Reaction time limits total science yield
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Images: Tempel 1 (Deep Impact) NASA/JPL/UMD
Earth: (Apollo) NASA
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Our challenge: enable rapid tactical 
operations for primitive bodies missions
• Improve planning turnaround 
• Achieve MER-style operations under deep space 

constraints
• Speed the “learning curve” 

• Achieve mission objectives faster
• Improve resilience to anomalies
• Collect data from targets of opportunity
• Enable time-domain science investigations
• Enable smarter flybys with high-res targeted data
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Benefits



Approach: Faster replanning cycle
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To thisFrom this…

• Contingency planning (maintain a pool of valid plans for 
different objectives)

• Expedited ground science data analysis, smart “quicklook” 
products



Approach: Onboard data analysis
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From this… To this

• Selective targeted data collection and return to exploit targets 
of opportunity (erosion features, outgassing, etc).

• Push time-critical decisions across the light-time gap
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ASE 
(EO-1)

HiiHAT Demo
(EO-1)

Autonav
(Deep Impact)

AEGIS 
(MER)

Objective Prioritize downlink 
(thermal detection)

Prioritize downlink 
(spectral mapping) 

Trajectory updates 
during encounter

Target detection, 
followup 

Data analysis ~2hr 5hr 1.5-8h 10-20m

Trajectory Generation - - 10-200m -

Activity Planning 30m - - 2m

Followup execution 90m - 1m <1m

Total reaction time ~4hr - 2-10h <25m 

Reference [Chien 2005, 
Davies 2006] [Bornstein 2011] [Ridel 2001] [Estlin 2011]
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This study

• Quantify benefits of agile operations for science yield

• Simulate mission data collection under different 
assumptions about reaction time

• Two scenarios
• Smart flyby (Lutetia 21)
• Encounter and mapping for proximity ops site selection

• Use representative trajectories from Rosetta encounters
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Lutetia 21 encounter by Rosetta
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Smart flyby performance
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Simulated targets of 
varying sizes, distributed 
randomly 
• erosion features 
• surface activity
• spectral anomalies

Enforce illumination, 
geometry constraints

What fraction of the 
time can we capture 
the target with high-res 
images, VNIR or UV 
spectroscopy?



Prox ops site selection

Jet Propulsion Laboratory / California Institute of Technology / Solar System Exploration Directorate 12

Goal: characterize activity level 
of candidate prox ops sites with 
high-resolution imagery

Simulate Rosetta mapping 
trajectories (very approximate, 
since real orbits are non-
Keplerian)

Three-week trajectories will 
image potential landing sites 
prior to landing 

Candidate sites are randomly 
distributed, and may have 
active and quiescent periods



Prox ops site selection performance
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Right: potential for followup 
imaging of surface activity 
for different feature 
lifespans



Prox ops site selection performance
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Right: solar angle range 
apparent in images, as a 
function of planning 
turnaround, for different 
activity periods

Larger angle ranges are 
desirable, but require fast 
turnaround to achieve



Missions
Asteroid / inert Comet / active
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Mission and science 
unknowns

Morphological units x x x x x x x x x x
Surface composition, mineralogy x x x x x x x x x x
Localized targets (boulders, crater walls, etc) x x x x x x x x x x
Satellites x
Plume activity, distribution over space and time x x x x x
Gravity field x
Location of site for sampling/landing x x x x x x
Surface conditions at sample site x x x x x x
Rotation rate and pole location x x x x x x x x
Spacecraft performance / faults x x x x x x x x x x

Applicable ground ops
technologies

Single-cycle trajectory/observation selection x x x x x x x x x
Fast instrument data processing x x x x x x x x x
Fast instrument data interpretation x x x x x x x x x

Applicable onboard 
technologies

Trajectory replan (fault or hazard recovery) x x x x x x x
Observation replan (opportunistic targeting) x x x x x x x x x
Morphological pattern recognition x x x x x x x x x
Spectral pattern recognition x x x x x x x x x
Plume/change detection x x x x x
Satellite detection x
TRN / optical navigation for prox. ops x x x x x x
Onboard planning / execution for prox. ops x x x x x x

Agile ops techniques 
across missions
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Conclusions

• Primitive bodies exploration requires innovative 
operations strategy

• Technological solutions will play an important role
• Better ground-side automation and fast replanning
• Limited transfer of authority for time-critical decisions

• Ops approach might influence mission planning and 
instrumentation
• Smart targeting for Trojan and Main Belt Asteroid tours
• High-cadence operations to accelerate prox ops 

schedules
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